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Abstract
A foam can be decomposed into successive layers of cells at the same
topological distance to an origin, which is either an arbitrary cell or a basal
plane. The shape of these layers (profile and thickening) indicates the degree
of randomness of the cellular pattern. To support this idea, we analyse the
layer shapes in 2D rectangular models of foam. As confirmed by numerical
simulations, the fluctuations in the direction normal to the layers are self-affine
on a significant range of scales, with values of the exponents compatible with
the KPZ universality class: ζ � 0.5 for the roughness exponent and z � 1.5
for the dynamic exponent measuring the increase of the intralayer correlation
length ξ . These fluctuations are not sufficient, however, to affect the dominant
behaviour of the number of cells per layer, found to saturate in cylindrical
geometry, and to increase linearly in concentric geometry.

PACS numbers: 47.53.+n, 83.80.Iz

1. Introduction

In the coarsening process of foams, large bubbles grow at the expense of smaller ones which
shrink and eventually disappear. From this basic feature, one may expect large discrepancies
in the size of bubbles. This, together with the fact that small units put together may build larger
ones, makes it plausible that foams obey some self-similar or fractal types of arrangement, at
least in suitable regimes like the late stage scaling state where the foam remains stationary
overall; only the mean bubble size increases with time.

Conjectures of this type were made earlier [1–3]. Even if, nowadays, fractal models of
foams are regarded as unrealistic, fractal geometry may still describe some partial, specific
aspects of those irregular structures. This is the aim of the present paper.

Our concern will be the fluctuations and populations of the layers into which any cellular
pattern can be decomposed. Through the study of simplified, but significant models, we
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will show that, because of a competition between disorder and artificial nearest-neighbour
correlations built in the geometrical definition of layers, the fluctuations of the layers adopt
self-affine profiles similar to those characteristic of aggregation–deposition phenomena in solid
state growth.

Foams are regular, yet topologically disordered patterns. Regularity is exhibited locally—
every vertex has minimal valencies (number of incident edges, interfaces, cells, etc) [4], so that
the edges of a two-dimensional foam form a regular graph of valency 3—but also globally: the
foam is uniform overall. This overall uniformity is a thermodynamic steady state, characterized
by maximum entropy, a few observable equations of state (known as Aboav–Weaire, Lewis,
etc, laws) and Boltzmann-like distributions of cells (the probability that a cell has n = 3, 4, . . .
neighbours) [5].

An effect of disorder is that the outer contour of layer j wiggles substantially. But this
roughening is limited by the correlations imposed by space-filling. The simple model studied
in this paper has been introduced to understand this effect. The definition of successive layers
at increasing distances j from the origin implies that the static roughening in foams and the
non-equilibrium roughening of a growing interface in crystal growth or in aggregation are
closely related problems.

2. Layers

2.1. Topological distance

The constraints of space-filling by topological polygons impose observable correlations
between cells [5]. In foams or similar assemblies of cells with fairly uniform sizes, because
of randomness, it is often more appropriate to account for correlations in terms of topology
than metrics. The topological distance between cells is defined as the minimum number of
boundaries (films in real foams) one has to cross (transversally) to join the interior of two cells.
Alternatively, this is the natural topological distance in the dual graph, where each cell is a
point and each dual bond counts for one along a minimizing path. Thus any cell is at distance
0 from itself. Nearest neighbours, sharing a common facet, are at distance 1 from each other.

Around any particular cell, taken as the origin j = 0, the cells can be classified into layers,
labelled by j = 1, 2, 3, . . . , the set of all cells at distance j from the origin [4, 6–11]3. Thus,
layers are equivalent to coordination shells in the dual graph4 [10, 12–14].

All the cells in layer j are nearest neighbours to at least one cell in layer j − 1. Many, but
not all, cells are also neighbours to cells in layer j + 1. The cells which have no contact with
any one in layer j + 1 are called defect inclusions (or singular cells) [6]. Members of isolated
clusters are also considered as defects. A shell is the closed contour of interfaces (edges in
2D) forming the outer boundary of a layer. In 2D, a shell j consists of edges separating j and
(j + 1) cells. By convention, it is a topological circle. More precise definitions are given in
the appendix.

Here, we shall also measure distance from a (flat) ground (y = 0). In this case, a layer
is the set of cells at distance j from the ground (with periodic boundary conditions in the
horizontal direction, the overall geometry becomes cylindrical).

3 An n corona, as used in [11], is equivalent to the union of layers j = 0, . . . , n.
4 In general, the dual is a multi-graph, with more than one bond connecting two nodes. Only with suitable restrictions
does it become a graph. This is discussed in [8] in another terminology. Here, we will always assume that the dual
of a foam is a graph—excluding cells with 1 or 2 edges, double contacts, etc. Two neighbouring cells, separated
by an interface (common side in 2D), are represented, in the dual graph, by two vertices linked by an edge (in any
dimensions).
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2.2. Correlations and populations

Given the decomposition of a foam into layers, what is the number of cells Kj in each layer
j = 1, 2, 3, . . . ? What is its typical—or average—behaviour for large j? In this section,
these statements are given for concentric geometry.

Comparing some of their formulae with data from quasi-2D soap froths and from Voronoi
models, Aste et al [15] observe that ‘experimentally, the number of cells per layer increases
linearly in j after the first few layers’. Similar conclusions were drawn from numerical
simulations in [8, 9]. With more speculation, the subject is also treated in [16]. Kj linear in j
is often called the Euclidean hypothesis.

If the size distribution is well behaved (with bounded moments) and if the layers are ordered
increasingly, 〈Kj 〉 is proportional to the geometrical measure Mj of the j shell: length in 2D
foams, area in 3D ones.

A priori, if the shells behave like smooth closed surfaces at large scale, we expect Mj to
be of the order of jD−1. If, on the other hand, the shells are wildly shaken by randomness
(like random walks in 2D), then Mj ∼ jν , with an exponent larger than D− 1 but presumably
smaller than D because of self-avoidance. The layers are then rougher.

A power law behaviour Mj ∼ jν means that the foam is self-affine, a type of fractal
symmetry [17–19]. If such a power law holds, then the value of the exponent is a quantitative
signature of the degree of disorder. Lower values (closer to D − 1) correspond to weakly
random patterns (extreme cell sizes less likely, smooth shell shapes at large distances), higher
values (D− 1 < ν < D) characterize more disordered foams (large deviations in sizes, shells
behaving like random walks or surfaces, large proportion of inclusions).

The present paper is mainly devoted to investigating these geometrical features in a
simplified—but tractable—model. As shown in [8], correlations are closely related to
concentric populations around cells: for example, expressing the pair correlation Aj(k, n)

(k- and n-sided cells at mutual distance j ) as a function of j and of the topological charges
(6 − k) and (6 − n) involves the same coefficients as for Kj .

3. A Cartesian model: tower foams

The model retains some essential features of real foams: randomness, space filling,
coordination 3. It also has artefacts, which make it accessible to theory but have a more
tenuous correspondence with reality: there are no triangular cells, the cell sizes are integer
numbers, with a minimal area of two, and the disorder is confined to only one direction in
space.

Analysis of artificial models is classic in foams [20]. Even if this would require further
investigations and proofs, we believe that, since our questions are chiefly topological in nature,
our minimal model retains enough characteristics of foams to make our conclusions valid for
a broader category of cellular patterns, including real foams.

Before defining the model, let us give an argument showing that the absence of triangles
is not relevant.

3.1. The role of triangles in 2D foams

In the partition into layers, triangular cells are always defect inclusions. Moreover, extinction
(the so-calledT 2 elementary topological transformation) of an isolated triangle does not change
the layer structure, in the sense that any cell belonging to layer j (j = 0, 1, 2, . . .) before
extinction still belongs to layer j after extinction (whereas this may no longer be the case under



6228 C Oguey and N Rivier

t

Figure 1. Dual graph of a triangle t and its three neighbours.

extinction of an n-sided cell, n � 4). This property holds for any choice of decomposition
into layers, that is, whichever (non-triangular) cell or plane is chosen as origin.

To prove this fact, consider the pattern dual to a triangular cell (figure 1). To join two cells
(vertices in the dual graph, excluding the triangle t itself), it is always shorter to take one of
the external edges than to go through the central three-fold star t . Therefore, no minimizing
path goes through t and deleting t will not change any numbering.

The same property holds if there are more than one vertex inside a dual triangle. In
fact, any finite pattern compatible with the general prescriptions of the foam (e.g. generic
coordination 3 in the direct graph) is acceptable inside the outer triangle as long as the boundary
(the outer triangle itself) is not changed. In the direct graph, this corresponds to a finite patch
that is connected to the rest of the graph by only three bonds: a ‘tripod’. Tripods are always
defects, regardless of the origin (as long as it is outside the tripod).

As a consequence, the layer structure is affected by the presence of triangles only in a
reducible way. Creating or destroying triangles does not change the distance of any other cell
to the origin (thus to which layer a cell belongs). So, if the layer sequence is appropriate to
characterize the type of given cellular patterns, we should seek ‘robust’ numbers, independent
of the triangles. For example, the population Kj does not meet this criterion. Neither does the
topological charge Qj of layer j . But the number of regular cells does: K r

j = Kj −Kdef
j . The

charge enclosed by the j shell,
∑j

i=0 Qi , would, if there was no triangle edge on the boundary
(= shell).

3.2. Definition

The model is a 2D packing of columnar cells, each of unit width (in the horizontal, x, direction)
and of random length s (height in the vertical, y, direction). The sizes (s is both length and
area) of the individual cells are taken as independent random variables, identically distributed
with exponential law:

Pr(s) = 1 − q

q
qs/2 s = 2, 4, 6, . . . . (1)

The parameter q has a fixed value in ]0, 1[. It controls the mean cell size through 〈s〉 =
2/(1 − q), which tends to infinity as q → 1. Unless otherwise stated, we will take q = 1/2,
〈s〉 = 4.

The foam lies on a semi-infinite vertical cylinder, a domain of width L with periodic
boundary conditions in the x direction. The bottom has a crenellated profile: y0 = x mod 2.
This profile and even values for the cell lengths ensure that vertices have coordination 3, as in
real foams. The system is unbounded in the positive y direction.

Some epithelial tissues have a columnar geometry similar to the present model [21].
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Figure 2. First columns of the bottom layers, j � 10, (bottom) and of the layers in the range
j ∼ 2000 (top) of a typical simulation (L = 1000). To avoid overloading the picture, the cell
boundaries are not drawn (except for the part belonging to layer boundaries). Instead, the following
convention is used: the top square of each cell (each cell is a pile of squares) is marked by a dot (·)
when the cell is regular and by a cross (+) when it is a defect (= inclusion) [4, 9].

3.3. Simulations

Simulations are carried out on systems of over 2 ×106 cells, that is L = 1000 and
j = 0, . . . , 2000, . . . . The j th shell is described by a profile function hj : y = hj (x),
periodic in x with period L. The aspect of the foam and some of its layers are shown in
figure 2.

The mean vertical position of shell j , hj = L−1
∫ L

0 hj (x) dx is linear in j , up to small
fluctuations. The mean rise (average slope) is the product of the mean cell size by the mean
number v of cells per column in each layer. According to figure 3 (top), the average vertical
thickness is v = 1.81 . . . cells in the stationary regime.
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Figure 3. Top: the number of cells per layer divided byL versus j . This quantity is the velocity v at
which the front moves vertically (in units of cells, considering j as time). Bottom: the fluctuations
σ(hj ) as a function of j . In both graphs, an average has been taken over 50 samples.

3.4. Profile fluctuations

The striking feature is that the deviation (rms) of hj :

σ(hj ) =
〈(

1

L

∫ L

0

(
hj (x) − hj

)2
dx

)1/2
〉

(2)

is bounded; it saturates at large j (figure 3 (bottom)). 〈· · ·〉 stands for the average over samples
or disorder. If, instead of the topological distance, we had measured the Euclidean height
of the j th cell in each column, we would have found a rms growing like j 1/2 (law of large
numbers). The constant asymptotic behaviour indicates a transverse rigidity (correlation) in
the layers. Note that this rigidity is not a consequence of the statistics of the cells, independent
by construction. The correlation is geometrical, entirely contained in the way the layers are
defined.

As the cells are identically distributed in size throughout the whole foam (in particular
their mean size 〈s〉 is constant), the number of cells is related to the shape of the layer profile;
to a first approximation, Kj is proportional to the length of the graph of hj (curve hj (x) in
2D). The fact that the fluctuations are bounded implies that Kj is also bounded (section 3.6).
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Figure 4. Equal time correlation gj versus horizontal distance x, sampled for values of j ranging
from 1 (lower curve) to jmax � L3/2 (log–log plot). The curves gj (x) are periodic in x with period
L and symmetric about x = 0 and L/2. The broken line has slope 0.5.

3.5. Profile correlations

These characteristics are corroborated by analysing the profile correlation function

gj (x) = 〈|hj (k + x) − hj (k)|〉 (3)

(average taken over k = 1, . . . , L and over samples). The following properties are directly
observed in simulations (figure 4). As the layer number j increases, the correlation function
converges to a stationary profile, ultimately independent of j . The convergence is fast at small
distance |x| and takes progressively longer to settle at larger distances. The slope of the log
plot (figure 4) gives the wandering, or roughness, exponent ζ [22, 23]. The value found here
is ζ = 0.50 ± 0.01.

The finite size of the system has no significant effect over a range of |x| small compared to
L/2. However, the saturation value (g reaches a maximum near x = L/2) depends on sample
size L. The dependence on L is discussed further in section 4.

3.6. Layer size

The size (here length)Mj of shell j is the sum of its horizontal componentL (orLj if it depends
on j , as in section 5.1) and of the vertical steps:

∑L−1
x=0 |hj (x + 1) − hj (x)|; on average, the

latter is proportional to the correlation function (3), so that

〈Mj 〉 = (
1 + gj (1)

)
Lj . (4)

There is a similar expression for the population 〈Kj 〉; indeed, since proper inclusion clusters do
not occur in columnar models, 〈Kj+1〉 is proportional to 〈Mj 〉 by a dimensional factor related
to cell size 〈s〉.

Thus, the relatively fast convergence of the layer size to its asymptotic behaviour (a
constant value in cylindrical geometry, linear in j in concentric geometry, see section 5.1) is
due to the rapid convergence of the pair correlation at short range (x = 1). The fact that 〈Mj 〉
does not depend on longer range correlations, linked to slower processes, certainly contributes
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to its stability. But the drawback is that this quantity tells us little, eventually, on the nature of
(dis)order in the system.

4. Connection with aggregation models—scaling

As already suggested by the title and figures, there is a close relation between our layer
profiles and the non-equilibrium problems of crystal growth, aggregation, ballistic deposition,
etc (see [17–19] for reviews). Our layers have nothing to do with crystal planes. They are
related to the shape of the crystal surface as it evolves over time (by aggregation, deposition,
contamination, etc). The correspondence is

foams: j successive layers
aggregates: t evolving surface

By definition layer j + 1 entirely covers layer j . In the Manhattan geometry of our model,
this means that the (j + 1) cells must cover not only the j cells on top (local maxima, plateaux
or minima where the defects sometimes occur) but also the vertical sides (cliffs) of shell j .
Hence the height function hj satisfies conditions of the type

hj+1(x) � max(hj (x − 1), hj (x), hj (x + 1)), ∀x. (5)

Such rules are at the basis of a number of models of deposition–aggregation. How the profile
shape is influenced by the precise settings of the rules (equation of motion) was analysed
in [24].

Most of the results we use here are from scaling theory, which is known to be valid in such
phenomena. Scaling theory is based on the assumption that the profile is self-affine; define
δhj as the difference between the local and average heights:

δhj (x) = hj (x) − L−1
∫ L

0
hj (x

′) dx ′. (6)

A self-affine behaviour means that there are exponents z, ζ such that, for all λ (compatible with
physical length scales), λζ δhλzj (λx) has the same statistical properties as δhj (x) [19, 22, 23].
That is, if x scales with λ, the time j scales as λz, and the profile δh as λζ where z and ζ are,
respectively, the dynamical and the roughness exponents.

The values of the exponents can be deduced from the fluctuations σ(hj ) as well as from
the correlation function gj , both depending on j and L. In the model, these two functions
have, indeed, a behaviour typical of scaling.

In section 3.5 on the correlations (in particular figure 4), we already found that the
exponents were ζ � 0.5 and z � 3/2 (from jmax � Lz).

At small values of j , the mean fluctuations of the layer profile are not sensitive to system
size L (provided, only, that L > j ) (figure 5 (top)). They fit a power law with exponent
β = 0.34 ± 0.02.

At large j (or time), the fluctuations saturate (figure 3 (bottom)) to a stationary value
σ(h∞) depending on L (figure 5 (bottom)). Least square fit yields, again, the roughness
exponent ζ = 0.51 ± 0.01.

The ratio of these values is the dynamical exponent [22, 23, 25] giving the spread in time
of the correlation length: ξj ∼ j 1/z. Here, we get z = ζ/β � 1.5. These values agree with
those found in section 3.5.
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Figure 5. Top: log–log plots of the mean fluctuations of the layer profile, σ(hj ), versus j for small
values of j . The points are for L = 1600 (×) and L = 6400 (+); the broken line (fit) has slope
0.34. Bottom: the saturation value σ(h∞) as a function of L. Slope of the fit: 0.508.

5. Variants

5.1. Conical boundary conditions

To get a closer estimate of the populations of concentric layers around a central cell, we have
changed the boundary conditions from cylindrical to conical. Instead of being constant, the im-
posed horizontal period now depends on j asLj = 100+2j . At each step, layer j+1 is built over
layer j as before, but now stacking cells independently intoLj+1 = Lj +2 columns. Similarly,
the cells in layer j + 2 will be chosen independently over Lj+2 = Lj + 4 columns, and so on.

The resulting cell population, shown in figure 6, converges towards an affine function of
j . Measured in cells per column, the slope quickly converges to the constant v = 1.808 . . . ,
which is, within error bars, the same as in section 3.3. Indeed, the nearest-neighbour correlation
is practically insensitive to the boundary conditions.



6234 C Oguey and N Rivier

1 10 100 1000 10000
j

0 500 1000 1500 2000 2500
j1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
v

100

1000

10000
n

Figure 6. Layer population in conical geometry, averaged over 50 samples. Top: the number of
cells Kj per layer as a function of j (log–log). Bottom: the ‘velocity’ vj (= Kj/Lj ) versus j .

5.2. Inhomogeneous cell distributions

To confirm the transversal rigidity of the layers, we have also tested an inhomogeneous model:
the cell size distribution is no longer constant but it varies from column to column. In (1), the
parameter q now depends on x as

q(x) = 3

4
−

∣∣∣∣ x2L − 1

4

∣∣∣∣ 0 � x � L (7)

(‘gradient model’). So the average cell size 〈s〉(x) varies from 4 (near the edges of the box)
to 8 (in the middle). Since the velocity is proportional to 〈s〉, we might have thought that,
in the absence of correlations, the centre would grow twice as fast as the flanks, so that the
average slope of the profile would increase with altitude (j ). But, as figure 7 (top) shows,
this is not the case: after the first layers (transient regime, not shown), the slope of the profile
quickly saturates to a steady value. This is another effect of the correlation induced by the
layer representation.

Another manifestation of this saturation is that the mean layer thickness quickly reaches
a steady regime fluctuating around the average value of v = 2.93 . . . cells (figure 7 (bottom)).
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Figure 7. The gradient model (an inhomogeneous foam) of width L = 250. Top: layers around
j ∼ 250 (lower set, left vertical y scale) and around j ∼ 5000 (upper set, right vertical y scale).
The mean cell size is larger in the middle (on the right of the image) than on the left (the profile is
symmetric wrt x = L/2, up to fluctuations). A steady state (slope, etc) has already been achieved
in the lower set. Bottom: mean number of cells per layer and per column as a function of altitude
(represented by the layer number j )(average over 50 samples).

6. Foams as clouds of defects

For concentric layers around a n-sided cell, it was observed that the number Kj of cells in
layer j is the sum of two contributions [8]:

Kj = a(n − 6) + bj . (8)

The second term, bj , increases linearly with j (in 2D), as expected of smooth layers on a
Euclidean, planar substrate. The first term does not depend on j . It is explained as follows:
the central cell is the source of curvature, a topological charge (n−6), which must be screened
by the disordered foam. A dipole of opposite charge constitutes a dislocation, and screening of
the ‘central charge’ is done by directing a few dipoles inevitably present in the random foam.
Thus a(n− 6) is the Burgers vector resulting from the necessary screening of the topological
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charge of the central cell by the random foam and Kj is proportional to the length of the closed
contour encircling the central cell at distance j . The factor a is of the order of the screening
length [26].

Our tower foam is also random, has non-hexagonal cells, and efficient screening by
randomly oriented dislocations. Through periodic boundary conditions, each shell forms a
closed contour, bounding a portion of the foam. This contour cuts across some dislocations,
and its length fluctuates as the vector sum of the Burgers vectors of the dislocations which it
cuts by an amount proportional to L1/2. This argument is that of Kosterlitz and Thouless [27]
to justify the existence of a condensed phase capable of resisting shear in two dimensions. The
contour is called the Burgers contour or Wilson loop (more on this point in given in [26]).

7. Discussion

We have shown that the layer profiles have a shape similar to those observed in deposition–
aggregation models and that scaling theory suitably accounts for their statistics. The layer
number j is analogous to time in deposition processes.

The roughness of the layers obeys scaling power laws and the values of the exponents
can be evaluated with good precision in our Cartesian model. The transverse fluctuations are
controlled by a correlation length ξj ∝ j 1/z evolving in time (= distance to the origin) as a
power law with exponent z � 1.5. At horizontal length scales x small compared to ξj , the
profile is rough. At larger length scales, the fluctuations are uncorrelated and the profile is
reminiscent of the initial conditions. In the stationary regime, settled down in the range x < ξj ,
the roughness of the height (perpendicular to the layers) as a function of distance (parallel to
the layers) obeys a power law δh(x) ∼ xζ . In our numerical simulations, we found ζ � 0.5.
These values are in agreement with scaling and the KPZ universality class [19, 22, 23, 28].

Figure 3 shows clearly that the shape of the ground affects the statistics close to the bottom
(j = 0), but this effect vanishes as we move away into the bulk. It is screened by the disorder.
In fact, in cylindrical geometry, the saturation of the population Kj is much faster than the
saturation of height fluctuations. This is due to the fact that shell length depends only on short
range correlations which rapidly reach their stationary regime. The picture is similar to that
of a random directed polymer, or to the fact that the macroscopic shape of aggregates is not
fractal (even if their boundary is). Whence, in concentric geometry, Mj and Kj both have an
asymptotic exponent ν = 1 (ν = D − 1 in higher dimensions) in the class of our models.

Immediately following from their definition, the fact that successive layers completely
cover each other puts into the game a longitudinal nearest-neighbour correlation in a way
which, apparently, has nothing to do with any specificity (correlation) of the (dis)order of the
underlying cell pattern.

Similar conclusions can be drawn from the statistical distribution of dislocations; see [26].
In natural or simulated foams, shell j wiggles around, due to disorder, so that the perimeter

of the topological circle of radius j is larger than 2πj or 6j (the value for a hexagonal
honeycomb). The fact that Kj is linear in j (albeit with a slope larger than 6 as found in [9,15]
and here: see sections 3.6 and 5) shows that the disorder does not introduce some uniform,
negative, Gaussian curvature5. The local fluctuations are controlled by the layer structure.

One last word about the model. One might object that our conclusions only hold for
our special models, but we do not think so. The dominant phenomenon—saturation of the
fluctuations—occurs in the vertical direction where the disorder is maximal (the height of our

5 In a space of constant Gaussian curvature −G, a circle of radius j has perimeter equal to
π

∣∣G−1/2
[
exp(G1/2j) − exp(−G1/2j)

]∣∣.
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cells are random and uncorrelated). Actually, the model was designed for this purpose: to
shuffle, in a maximal way, the things in the direction where it is often implicitly believed,
sometimes observed, that the layers only smoothly fluctuate.

Regarding other features, however, it is possible that maximal disorder has not quite been
achieved in our model. One, obvious, bias is the strong anisotropy of our disorder, similar to
the ‘solid on solid’ (SOS) approximation for solid surfaces: there is no backward or forward
(in x) wandering of the layers (no overhangs in KPZs terminology [28]). Such wanderings
would very probably change the topology of the layers (forming inclusions, for example).

Another artefact is the minimal size of the cells; even if there is always a natural UV
cutoff in condensed matter, it may be irrelevant in the range of scales where the concept of
foam applies (in this respect, our model is highly ‘Euclidean’). Do these constraints affect the
roughness of the layers? In principle, they could; in particular, when the (typical) cell sizes
are not bounded from below, there is no more simple relation between the cell population Kj

and the geometrical size Mj .
Nevertheless, we see no reason why the purely geometrical transverse rigidity of the layers,

pointed out in the core of this paper, should not be present in any type of cell pattern. We
conjecture that ν = 1 holds generally in foams containing a bounded proportion of cells with
vanishing size. In wilder cases without a lower bound in size, on the general argument that
disorder increases roughness, our values of the exponents ζ and ν ought to be considered as
lower bounds to real ones. Further investigations are on the way.
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Appendix. Defect inclusions

In general, the topology of the layers may be quite involved (see e.g. [16]). So, defining the
basic concepts deserves some care, which is the purpose of this appendix.

First, notice that the boundary separating layer j from layer j +1 is not, in general, simply
connected (in 2D, where none of the layers j � 1 are simply connected, we mean that this
boundary may be topologically different from a circle). It is not even always connected, because
the layers themselves may be disconnected; they may include ’baby universes’, disjoint from
the main layer (a concentric annulus in 2D).

So let us define a shell j as the outer boundary of layer j . In general, this is only a part
of the boundary between layers j and j + 1, namely the outermost connected part which has
the topology of a (D− 1) sphere in dimension D. Its interior—the region of space containing
the origin and bounded by shell j—contains all the cells of all the layers i with i � j . It
may also contain cells from higher layers, ‘baby universes’, which are then also considered as
inclusions.

The cells of layer j which share an edge (in 2D) or a face (in 3D) with shell j are called
regular cells. The other ones are defects, or inclusions6. The defects of layer j either stick
to regular j cells (on sides opposite to shell j , in such a way that the defects have no face
in common with shell j ), or they may form inclusion clusters, disconnected from the regular
component (the part of the layer made of regular cells only). Such inclusions necessarily lie
in the interior of some lower shell.

6 This includes E and D defects of [8], ‘type 2 and 3’ cells of [10].
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In figure 2, the defects are marked by a +. Proper inclusions (separated from the regular
part) never occur in columnar models.
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Press) pp 479–582
[24] Julien R and Botet R 1985 J. Phys. A: Math. Gen. 18 2279
[25] Family F and Vicsek T 1985 J. Phys. A: Math. Gen. 18 L75
[26] Rivier N, Aste T, Dubertret B, Oguey C and Ohlenbusch H M 2001 Gauge invariance in foams, in preparation
[27] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[28] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889


